and biocompatible supports for biomaterials and nanomaterials in bioelectronic devices is

also necessary [56]. Through these efforts, it is expected that a commercially available

biocomputer composed of multifunctional bioelectronic components capable of being

worn on the body will be developed in the future. In conclusion, this chapter provides the

interdisciplinary knowledge of bioelectronics, nanomaterials, and their potential in

the development of functional bioelectronic devices, leading to the generation of a

biocomputer.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant

funded by the Korea government (MSIT) (No. 2019R1A2C3002300), and by the National

R&D Program through the National Research Foundation of Korea (NRF) funded by the

Ministry of Science and ICT(NRF- NRF-2022M3H4A1A01005271).

References

1. A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M.I. Ismail, H.A. Qari, K. Umar,

M.N. Mohamad Ibrahim, Recent Advances in Metal Decorated Nanomaterials and Their

Various Biological Applications: A Review. Front. Chem. 8, (2020) 341.

2. J. Zhang, L. Liu, Y. Yang, Q. Huang, D. Li, D. Zeng, A Review on Two-Dimensional Materials for

Chemiresistive- and FET-Type Gas Sensors. Phys. Chem. Chem. Phys. 23, (2021) 15420–15439.

3. M. Rolandi, A. Noy, S. Inal, J. Rivnay, Advances in Bioelectronics: Materials, Devices, and

Translational Applications. APL Mater. 9, (2021) 070402.

4. J. Zhuang, A.P. Young, C.K. Tsung, Integration of Biomolecules with Metal–Organic

Frameworks. Small 13, (2017) 1700880.

5. S.E. Lyshevski, Nano and Molecular Electronics Handbook. (2007) Florida, USA, CRC Press.

6. J.-W. Choi, B.K. Oh, Y.J. Kim, J. Min, Protein-Based Biomemory Device Consisting of the

Cysteine-Modified Azurin. Appl. Phys. Lett. 91, (2007) 263902.

7. T. Lee, S.U. Kim, J. Min, J.-W. Choi, Multilevel Biomemory Device Consisting of Recombinant

Azurin/Cytochrome c. Adv. Mater. 22, (2010) 510–514.

8. N. Kalyani, A. Moudgil, S. Das, P. Mishra, Metalloprotein Based Scalable Field Effect

Transistor with Enhanced Switching Behaviour. Sens. Actuators B Chem. 246, (2017) 363–369.

9. D. Melnikov, G. Strack, J. Zhou, J.R. Windmiller, J. Halámek, V. Bocharova, M.C. Chuang, P.

Santhosh, V. Privman, J. Wang, E. Katz, Enzymatic AND Logic Gates Operated under

Conditions Characteristic of Biomedical Applications. J. Phys. Chem. 114, (2010) 12166–12174.

10. J. Yin, J. Wang, R. Niu, S. Ren, D. Wang, J. Chao, DNA Nanotechnology-Based Biocomputing.

Chem. Res. Chin. Univ. 36, (2020) 219–226.

11. G. Maruccio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, R.

Rinaldi, S. Masiero, T. Giorgi, G. Gottarelli, Field Effect Transistor Based on a Modified DNA

Base. Nano Lett. 3, (2003) 479–483.

12. M.N. Stojanović, D. Stefanović, Deoxyribozyme-Based Half-Adder. J. Am. Chem. Soc. 125,

(2003) 6673–6676.

13. J.J. Shu, Q.W. Wang, K.Y. Yong, F. Shao, K.J. Lee, Programmable DNA-Mediated Multitasking

Processor. J. Phys. Chem. 119, (2015) 5639–5644.

14. K. Chen, J. Kong, J. Zhu, N. Ermann, P. Predki, U.F. Keyser, Digital Data Storage Using DNA

Nanostructures and Solid-State Nanopores. Nano Lett. 19, (2019) 1210–1215.

286

Bioelectronics