and biocompatible supports for biomaterials and nanomaterials in bioelectronic devices is
also necessary [56]. Through these efforts, it is expected that a commercially available
biocomputer composed of multifunctional bioelectronic components capable of being
worn on the body will be developed in the future. In conclusion, this chapter provides the
interdisciplinary knowledge of bioelectronics, nanomaterials, and their potential in
the development of functional bioelectronic devices, leading to the generation of a
biocomputer.
Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2019R1A2C3002300), and by the National
R&D Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT(NRF- NRF-2022M3H4A1A01005271).
References
1. A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M.I. Ismail, H.A. Qari, K. Umar,
M.N. Mohamad Ibrahim, Recent Advances in Metal Decorated Nanomaterials and Their
Various Biological Applications: A Review. Front. Chem. 8, (2020) 341.
2. J. Zhang, L. Liu, Y. Yang, Q. Huang, D. Li, D. Zeng, A Review on Two-Dimensional Materials for
Chemiresistive- and FET-Type Gas Sensors. Phys. Chem. Chem. Phys. 23, (2021) 15420–15439.
3. M. Rolandi, A. Noy, S. Inal, J. Rivnay, Advances in Bioelectronics: Materials, Devices, and
Translational Applications. APL Mater. 9, (2021) 070402.
4. J. Zhuang, A.P. Young, C.K. Tsung, Integration of Biomolecules with Metal–Organic
Frameworks. Small 13, (2017) 1700880.
5. S.E. Lyshevski, Nano and Molecular Electronics Handbook. (2007) Florida, USA, CRC Press.
6. J.-W. Choi, B.K. Oh, Y.J. Kim, J. Min, Protein-Based Biomemory Device Consisting of the
Cysteine-Modified Azurin. Appl. Phys. Lett. 91, (2007) 263902.
7. T. Lee, S.U. Kim, J. Min, J.-W. Choi, Multilevel Biomemory Device Consisting of Recombinant
Azurin/Cytochrome c. Adv. Mater. 22, (2010) 510–514.
8. N. Kalyani, A. Moudgil, S. Das, P. Mishra, Metalloprotein Based Scalable Field Effect
Transistor with Enhanced Switching Behaviour. Sens. Actuators B Chem. 246, (2017) 363–369.
9. D. Melnikov, G. Strack, J. Zhou, J.R. Windmiller, J. Halámek, V. Bocharova, M.C. Chuang, P.
Santhosh, V. Privman, J. Wang, E. Katz, Enzymatic AND Logic Gates Operated under
Conditions Characteristic of Biomedical Applications. J. Phys. Chem. 114, (2010) 12166–12174.
10. J. Yin, J. Wang, R. Niu, S. Ren, D. Wang, J. Chao, DNA Nanotechnology-Based Biocomputing.
Chem. Res. Chin. Univ. 36, (2020) 219–226.
11. G. Maruccio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, R.
Rinaldi, S. Masiero, T. Giorgi, G. Gottarelli, Field Effect Transistor Based on a Modified DNA
Base. Nano Lett. 3, (2003) 479–483.
12. M.N. Stojanović, D. Stefanović, Deoxyribozyme-Based Half-Adder. J. Am. Chem. Soc. 125,
(2003) 6673–6676.
13. J.J. Shu, Q.W. Wang, K.Y. Yong, F. Shao, K.J. Lee, Programmable DNA-Mediated Multitasking
Processor. J. Phys. Chem. 119, (2015) 5639–5644.
14. K. Chen, J. Kong, J. Zhu, N. Ermann, P. Predki, U.F. Keyser, Digital Data Storage Using DNA
Nanostructures and Solid-State Nanopores. Nano Lett. 19, (2019) 1210–1215.
286
Bioelectronics